1.3 Unit cell: ordering of Li+ and Al3+

The unit cell of lithiophorite was recalculated from the indexed powder pattern of a stoichiometric preparation (Table 5). Several reflection could not be indexed using Wadsley's value for b_0 . As these reflections were consistent in all preparations and also consistent with additional reflections in the electron diffractions, they have to be considered as superlattice reflections. Using b_0 three times that of Wadsley's resulted in a satisfactory indexing. On the other hand about 4 reflections (listed in

Table 5. — X-ray powder pattern of synthetic stoichiometric lithiophorite.

Reflection	Intensity	d (Å)	hkl
No.	(visual 1-10	Measured	Calculated	
1	8	9,52	9,46	001
2	1	8,11)	
3	2	6,99	impurity	
4	1	6,13	\	
5	10	4,74	4,73	002
6	3	4,36	4,35	020
7	2	4,32	4,20	1 11
8	1	4,17	4,16	012
9	1	4,10	4,10	101
10	3	3,16	3,15	003
11	3	2,534	2,527	$\overline{2}01$
12	1	2,513	2,506 2,481 2,491	130 131 200
13	2	2,437	2,427	$\bar{2}11$
13 14	2	2,418	2,425	$\overline{1}23$
15	9	2,377	2,395 2,368	$\frac{\overline{2}02}{131}$
16	2	2,307	2,306 2,305	132 201
17	2	2,165	2,160	203
18	2	2,120	2,133	132
19	1	2,059	2,058 2,052	133 202
20	1	1,973	impurity	
21	7	1,887	1,892 1,878	005 133
22	3	1,583	1,583	$\overline{1}35$

Table 5 as Nos. 2, 3, 4 and 20) cannot be lithiophorite reflections, as they vary in intensity or may even be absent in some preparations. We thus attribute these reflections to traces of admixtures; e.g. No. 4 obviously is the most intensive reflection (020) of γ -AlOOH, with d=6,11 Å.

The unit cell satisfying the values of Table 5 is only slightly different from Wadsley's cell (31), except that the b₀ is three times that of Wadsley's. The powder data are consistent with the electron diffractions of single crystals. These, however, differ from single crystal X-ray data by superstructure reflections. Such additional reflections have also been observed on natural material with electron diffraction by Wilson et al. (32). Table 6 lists the dimensions of the unit cell.

Table 6. — Unit cell dimensions of synthetic stoichiometric lithiophorite.

	This paper	Wadsley (31)
$\mathbf{a_0}$	$5,06~{ t A} \pm 0,01$	5,06 ű0,01
b ₀	8,70 ű0,01	$2,91 \text{ Å} \pm 0,01$
c _o	9,61 ű0,01	$9,55 \text{ Å} \pm 0,01$
β	100°7′±20′	100°30′±20′

While Wadsley (31) had to leave unanswered the question as to whether or not the Li and Al ions were ordered, our electron diffraction indicate unambiguously that the b_0 of Wadsley's unit cell must be multiplied by three; the Li and Al ions, thus, are ordered.

1.4 Analysis

The analytical results, listed in Table 7, confirm the formula

$$[Mn_{_{5}}^{_{4}+}Mn_{_{2}}^{_{2}+}O_{12}]^{-}\,.\,\,[\,Al_{_{4}}Li_{_{2}}(OH)_{\,12}]^{+}$$

which is more appropriate than the often quoted $(Al,Li)\,MnO_2(OH)_2$ as it gives the correct ratio of cations and valence states and moreover indicates the two different layers stacked on each other (1).

The three products 1.4, 1.5 and 1.14 were analyzed; they were pure with respect to X-rays and electron microscopical investigation.

Table 7. — Analysis of synthetic stoichiometric lithiophorite.

Preparation No.	Molar ratio			
	Li Di	Mn	Al	
1.4	14	30,3	20,0	
1.5	12	29,7	21,0	
1.14	8	30,3	20,2	
Theor.	10,000	30,000	20,000	